High-Order Embedded Finite Difference Schemes for Initial Boundary Value Problems on Time Dependent Irregular Domains
نویسندگان
چکیده
This paper considers a family of spatially discrete approximations, including boundary treatment, to initial boundary value problems in evolving bounded domains. The presented method is based on the Cartesian grid embedded Finite-Difference method, which was initially introduced by Abarbanel and Ditkowski (ICASE Report No. 96-8, 1996; and J. Comput. Phys. 133(2), 1997) and Ditkowski (Ph.D. thesis, Tel Aviv University, 1997), for initial boundary value problems on constant irregular domains. We perform a comprehensive theoretical analysis of the numerical issues, which arise when dealing with domains, whose boundaries evolve smoothly in the spatial domain as a function of time. In this class of problems the moving boundaries are impenetrable with either Dirichlet or Neumann boundary conditions, and should not be confused with the class of moving interface problems such as multiple phase flow, solidification, and the Stefan problem. Unlike other similar works on this class of problems, the resulting method is not restricted to domains of up to 3-D, can achieve higher than 2nd-order accuracy both in time and space, and is strictly stable in semi-discrete settings. The strict stability property of the method also implies, that the numerical solution remains consistent and valid for a long integration time. A complete convergence analysis is carried in semi-discrete settings, including a detailed analysis for the implementation of the diffusion equation. Numerical solutions of the diffusion equation, using the method for a 2nd and a 4th-order of accuracy are carried out in one dimension and two dimensions respectively, which demonstrates the efficacy of the method.
منابع مشابه
High-Order Embedded Finite Difference Schemes for Initial Boundary Value Problems on Time
This paper considers a family of spatially discrete approximations, including boundary treatment, to initial boundary value problems in evolving bounded domains. The presented method is based on the Cartesian grid embedded Finite-Difference method, which was initially introduced by Abarbanel and Ditkowski [24] [25], for initial boundary value problems on constant irregular domains. We perform a...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملMatched interface and boundary (MIB) for the implementation of boundary conditions in high-order central finite differences.
High-order central finite difference schemes encounter great difficulties in implementing complex boundary conditions. This paper introduces the matched interface and boundary (MIB) method as a novel boundary scheme to treat various general boundary conditions in arbitrarily high-order central finite difference schemes. To attain arbitrarily high order, the MIB method accurately extends the sol...
متن کاملA Novel Finite Difference Method of Order Three for the Third Order Boundary Value Problem in ODEs
In this article we have developed third order exact finite difference method for the numerical solution of third order boundary value problems. We constructed our numerical technique without change in structure of the coefficient matrix of the second-order method in cite{Pand}. We have discussed convergence of the proposed method. Numerical experiments on model test problems approves the simply...
متن کاملOn Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 39 شماره
صفحات -
تاریخ انتشار 2009